Submitted by ja607 on
Title | Neurophysiological and Genetic Findings in Patients With Juvenile Myoclonic Epilepsy. |
Publication Type | Journal Article |
Year of Publication | 2020 |
Authors | Stefani, S, Kousiappa, I, Nicolaou, N, Papathanasiou, ES, Oulas, A, Fanis, P, Neocleous, V, Phylactou, LA, Spyrou, GM, Papacostas, SS |
Journal | Front Integr Neurosci |
Volume | 14 |
Pagination | 45 |
Date Published | 2020 |
ISSN | 1662-5145 |
Abstract | Objective: Transcranial magnetic stimulation (TMS), a non-invasive procedure, stimulates the cortex evaluating the central motor pathways. The response is called motor evoked potential (MEP). Polyphasia results when the response crosses the baseline more than twice (zero crossing). Recent research shows MEP polyphasia in patients with generalized genetic epilepsy (GGE) and their first-degree relatives compared with controls. Juvenile Myoclonic Epilepsy (JME), a GGE type, is not well studied regarding polyphasia. In our study, we assessed polyphasia appearance probability with TMS in JME patients, their healthy first-degree relatives and controls. Two genetic approaches were applied to uncover genetic association with polyphasia. Methods: 20 JME patients, 23 first-degree relatives and 30 controls underwent TMS, obtaining 10-15 MEPs per participant. We evaluated MEP mean number of phases, proportion of MEP trials displaying polyphasia for each subject and variability between groups. Participants underwent whole exome sequencing (WES) via trio-based analysis and two-case scenario. Extensive bioinformatics analysis was applied. Results: We identified increased polyphasia in patients (85%) and relatives (70%) compared to controls (47%) and significantly higher mean number of zero crossings (i.e., occurrence of phases) (patients 1.49, relatives 1.46, controls 1.22; Conclusion: Polyphasia was present in JME patients and relatives in contrast to controls. Although no known clinical symptoms are linked to polyphasia this neurophysiological phenomenon is likely due to common cerebral electrophysiological abnormality. We did not discover direct association between genetic variants obtained and polyphasia. It is likely these genetic traits alone cannot provoke polyphasia, however, this predisposition combined with disturbed brain-electrical activity and tendency to generate seizures may increase the risk of developing polyphasia, mainly in patients and relatives. |
DOI | 10.3389/fnint.2020.00045 |
Alternate Journal | Front Integr Neurosci |
PubMed ID | 32973469 |
PubMed Central ID | PMC7468511 |
Grant List | U01 HG009088 / HG / NHGRI NIH HHS / United States UM1 HG008895 / HG / NHGRI NIH HHS / United States |